5 cm. The crystallized ATO nanotubes were immersed in 0.5 M Na2SO4 aqueous solution, and a voltage of 5 V was imposed between the electrodes. The reductive doping duration was maintained in the range of 5 to 40 s, and the optimum time was found to be 10 s. Finally, the ATO nanotubes were taken out, washed with deionized water, and dried for measurements. The morphology and crystalline structure of nanotube films were characterized using field-emission scanning electron microscope (FESEM, FEI Quanta 600, FEI Company, Hillsboro, OR, USA), transmission selleckchem electron microscope (HRTEM, JEM-2100F, JEOL Ltd., Akishima, Tokyo, Japan), and X-ray
diffractometer (XRD, D8 Discover diffractometer, Bruker AXS GMBH, Karlsruhe, Germany).
Raman spectroscopy (DXR Raman microscope with 532-nm excitation SC75741 laser, Thermo Fisher Scientific, Waltham, MA, USA) was employed for chemical state analysis. Time-resolved photoluminescence (TRPL) spectra were recorded at ambient temperature with a time-correlated single-photon counting (TCSPC) spectrometer (Photon Technology International, Inc., Birmingham, NJ, USA), where a pulsed laser at 375 nm with an average power of 1 mW (100 fs, 80 MHz) was used as the excitation source. The PEC water splitting performances of the ATO nanotubes without and with Emricasan order electrochemical hydrogenation were evaluated by AUTOLAB using a three-electrode configuration with the nanotube films (1 × 1 cm2) as working electrode, Ag/AgCl (3 M KCl) electrode as reference electrode, and a platinum foil as counter electrode. The supporting electrolyte was 1 M potassium hydroxide Florfenicol (KOH, pH = 14) containing 1 wt.% of ethylene glycol solution, where ethylene glycol acted as a potential hole scavenger (electron donor) to minimize the recombination of charge carriers [24]. The photocurrent was measured at a potential of
0 V (vs Ag/AgCl) under chopped light irradiation with UV light (5.8 mW/cm2 at 365 nm) and simulated solar illumination (100 mW/cm2) from a Xe lamp coupled with an air mass 1.5 global (AM 1.5G) filter (Newport no. 94063A). The incident photon-to-current conversion efficiency (IPCE, DC mode) was measured in three-electrode configuration by an AUTOLAB electrochemical station with the assistance of a commercial spectral response system (QEX10, PV Measurements, Inc., Boulder, CO, USA). In order to record the stable photoresponse from photoanodes, each wavelength was held for 3 min before the photocurrent measurements. Impedance measurements were performed under dark condition at open-circuit potential over a frequency range of 100 kHz to 0.1 Hz with an amplitude of 10 mV. Results and discussion Figure 1a represents the cross-sectional views of ATO film after second-step anodization in which a vertically aligned one-dimensional feature is observed. The average outer diameter of nanotubes is approximately 300 nm, with a tube wall thickness around 75 nm.