The actions of BDNF, GDNF and NGF were measured
in a parallel in vitro study on the oxidative metabolism of mouse brain mitochondria. BDNF produced a concentration-dependent MK-8669 in vitro increase in the respiratory control index (RCI, a measure of respiratory coupling efficiency, ATP synthesis, and organelle integrity) when co-incubated with synaptosomes containing signal transduction pathways; but GDNF failed to modify RCI, and NGF had only weak effects. BDNF had no effect on pure mitochondria, and enhanced oxidation only when complex I substrates were used. The effect of BDNF was inhibited by anti-BDNF antibody, MEK inhibitors or ABT-737, and also by IL-1β, indicating that the mitochondrial effects are mediated via the same MEK–Bcl-2 pathway as the neuroprotection. The complex I inhibitor rotenone, a compound implicated in the aetiology of Parkinson’s disease, inhibited both the in vitro mitochondrial and in vivo neuroprotective effects of BDNF. The ability of BDNF to modify brain metabolism and the efficiency of oxygen utilization via a MEK–Bcl-2 pathway may be an important component of the neuroprotective action observed with this neurotrophin. “
“Prior studies with crosses of the FVB/NJ (FVB; seizure-induced XL765 cell death-susceptible) mouse and the C57BL/6J (B6; seizure-induced cell death-resistant) mouse revealed the presence of a quantitative trait locus (QTL) on chromosome
15 that influenced susceptibility to kainic acid-induced cell death (Sicd2). In an earlier study, we confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure-induced cell death through the creation of the FVB.B6-Sicd2 congenic strain, and created
three interval-specific congenic lines (ISCLs) that encompass Sicd2 on chromosome 15 to fine-map this locus. To further localise this Sicd2 QTL, an additional congenic line carrying overlapping intervals of the B6 segment was created (ISCL-4), and compared with the previously created ISCL-1–ISCL-3 and assessed for seizure-induced cell death phenotype. Whereas all of the ISCLs showed reduced cell death associated with the B6 phenotype, ISCL-4, showed the most extensive reduction in seizure-induced cell death throughout all hippocampal subfields. In order to characterise the susceptibility loci on Sicd2 by use of this ISCL and identify compelling Sitaxentan candidate genes, we undertook an integrative genomic strategy of comparing exon transcript abundance in the hippocampus of this newly developed chromosome 15 subcongenic line (ISCL-4) and FVB-like littermates. We identified 10 putative candidate genes that are alternatively spliced between the strains and may govern strain-dependent differences in susceptibility to seizure-induced excitotoxic cell death. These results illustrate the importance of identifying transcriptomics variants in expression studies, and implicate novel candidate genes conferring susceptibility to seizure-induced cell death.