The physical template (climate and topography) is commonly consid

The physical template (climate and topography) is commonly considered a principal factor in affecting vegetation structure and dynamics (Stephenson, 1990 and Urban et al., 2000). Human influences play a major role, however, in shaping the structure of forest stands and landscapes even in remote mountain areas of the world. Environmental fragility and seasonality of human activities, such as tourism, make mountain areas in developing regions particularly vulnerable to human-induced impacts (e.g. soil and vegetation trampling, disturbance to native wildlife, waste dumping) (Brohman, 1996). Tourism in mountain areas has increased in the last decades (Price, 1992) and is becoming

a critical environmental issue in many developing countries (Geneletti and Dawa, 2009). This is particularly evident in Nepal, where increased pressures of tourism-related activities on Icotinib forest resources and the biodiversity of alpine shrub selleck screening library vegetation have already been documented (Stevens, 2003). Sagarmatha National Park and its Buffer Zone (SNPBZ), a World Heritage Site inhabited by the Sherpa ethnic group and located in the Khumbu valley (Stevens, 2003), provides an example. The Himalayan region, which also includes the Sagarmatha (Mt.

Everest), has been identified as a globally important area for biodiversity (Olson et al., 2001) and is one of the world’s 34 biodiversity hotspots (Courchamp, 2013). Over the past 50 years, the Sagarmatha region has become a premier international mountaineering and trekking destination.

Related activities have caused adverse impacts on regional forests and alpine vegetation (Bjønness, 1980 and Stevens, 2003), with over exploitation of alpine shrubs and woody vegetation, overgrazing, accelerated slope erosion, and uncontrolled lodge building (Byers, 2005). Large areas surrounding the main permanent settlements in the region are extensively deforested, with Pinus wallichiana plantations partly replacing natural forests ( Buffa et al., 1998). Despite the importance of the Sagarmatha region, few studies have examined sustainable management and environmental conservation of its fragile ecosystems, where ecological and socio-economic issues are strongly linked (Byers, 2005). The lack of knowledge about forest Isotretinoin structure and composition, as well as human impact on the ecosystems, has frequently limited the implementation of sustainable management plans (MFSC, 2007 and Rijal and Meilby, 2012). This study gathered quantitative data on forest resources and assessed the influences of human activities at Sagarmatha National Park (SNP) and its Buffer Zone (BZ). Using a multi-scale approach, we analyzed relationships among ecological, historical, topographic and anthropogenic variables to reveal the effects of human pressures on forest structure and composition.

Comments are closed.