They discharged as either slow (<6 Hz) tonic, single spikes or

They discharged as either slow (<6 Hz) tonic, single spikes or phasic clusters of spikes specific to wakefulness (W), the discharge www.selleckchem.com/products/th-302.html rate being highest during active waking and significantly lower during quiet

waking. They remained totally silent during both slow-wave sleep (SWS) and paradoxical (or rapid eye movement (REM)) sleep. The phasic unit activity was related to abrupt activation of electromyographic activity occurring either spontaneously or elicited by alerting sensory stimuli. At the transition from waking to sleep, they ceased firing before the onset of cortical synchronization (deactivation), the first sign of electroencephalographic sleep, a significant decrease in firing rate preceding the onset of unit activity of sleep-specific neurons in the basal forebrain (BFB)/preoptic (POA) hypothalamus, as described previously [Takahashi K, Lin JS, Sakai K (2009) Neuroscience 161:269-292]. Ruxolitinib cell line At the transition from SWS to waking, they fired before the onset of both cortical activation and a significant decrease

in activity of sleep-specific neurons. These findings support the previous view that the NA-LC system is involved in both tonic and phasic processes of arousal, and further support our previous proposals that initiation of sleep is caused by decreased activity of waking-promoting neurons (disfacilitation) and that NA-LC neurons play an important role in the sleep/waking switch, that is from waking to sleep and from sleep to waking [Takahashi K, Lin JS, Sakai K (2009) Neuroscience 161:269-292]. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.”
“HIV-1 viral protein R (Vpr) induces cell cycle arrest at the G(2)/M phase by a mechanism involving the activation of the DNA damage sensor ATR. We and others recently

showed that Vpr performs this function by subverting the activity of the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. Vpr could thus act as a connector between the SB-3CT E3 ligase and an unknown cellular factor whose ubiquitination would induce G(2) arrest. While attractive, this model is based solely on the indirect observation that some mutants of Vpr retain their interaction with the E3 ligase but fail to induce G(2) arrest. Using a tandem affinity purification approach, we observed that Vpr interacts with ubiquitinated cellular proteins and that this association requires the recruitment of an active E3 ligase given that the depletion of VPRBP by RNA interference or the overexpression of a dominant negative mutant of CUL4A decreased this association. Importantly, G(2)-arrest-defective mutants of Vpr in the C-terminal putative substrate-interacting domain displayed a decreased association with ubiquitinated proteins. We also found that the inhibition of proteasomal activity increased this association and that the ubiquitin chains were at least in part constituted of classical K48 linkages.

Comments are closed.