This has been observed after accidental injuries with nonsterile needles29
or in chimpanzee studies.16 Two conclusions can be drawn from these observations: (1) the majority of the genome containing HBV and HDV particles is infectious; (2) HBV and HDV must have evolved a mechanism that efficiently promotes them to the liver. The molecular basis for this liver tropism is unknown. The work presented here suggests a mechanism on the level of receptor recognition. The data were acquired through application of chemically synthesized lipopeptide fragments of the HBV L-protein that interact Tanespimycin solubility dmso with and inactivate an unknown HBV receptor. We provide evidence that the ability of HBV to address hepatocytes with high efficacy is triggered by the myristoylated N-terminal preS1-subdomain of L. The exclusive targeting of the respective
lipopeptides to the liver suggests that the HBV-receptor is liver-specific and not expressed in substantial amounts in other organs. The most remarkable finding of our study is the observation that wildtype HBVpreS1-lipopetides accumulate in livers of animals that are not susceptible for HBV. Using 26 peptides with different mutations, including exchanges of single L-amino acids with their respective D-enantiomers we demonstrated a tight correlation between the liver tropism in mice and the potency to inhibit HBV infection in vitro. Thus, receptor recognition of the HBVpreS-ligand is indistinguishable between mice and humans (and according DNA Damage inhibitor to the
data presented in Fig. 4A,B, also rats and dogs). The presence of an HBVpreS-receptor in rodents was unexpected and questions the hypothesis that the refractiveness of mice against HBV infection is caused by a deficiency in receptor-binding. However, the previous identification of Tupaia belangeri as a model for HBV infection30 implied that receptor expression is not limited to only closely related human species. The presence of an HBVpreS-specific receptor in mice and rats has important implications for the systematic development of immune competent small animal models for HBV and/or HDV. Since resistance learn more against infection cannot solely be explained by the lack of an HBV-specific binding receptor it is probably related to the lack of either a cofactor, involved in membrane fusion (which could even be functionally associated with the same molecule), or a factor controlling a subordinated step after the release of the nucleocapsid or both. Using the transplanted uPA-SCID mouse model Lutgehetmann et al.31 demonstrated that mouse hepatocytes are not susceptible to HDV infection in vivo. Given that mouse hepatocytes bind HDV we conclude that a factor/activity required for triggering membrane fusion is missing. The presence of an HBVpreS-specific receptor in mice should also be considered when using transplanted uPA/RAG2 mice as an in vivo infection model.32 These mice are susceptible to HBV and HDV.