In order to gain insight into
the mechanisms used to regulate the formation of the antibody repertoire [8]; we previously analyzed the pattern of CDR-H3 repertoire development in the bone marrow of BALB/c mice. We found that constraints on length, amino acid composition, and hydrophobicity could readily be identified in pro-B cells and reflected germline sequence imposed constraints on VDJ diversity. Passage through successive checkpoint stages appeared to accentuate these constraints, with enhancement of amino acid preferences and a decrease in the variance of the distribution of lengths and average hydrophobicities. Although many classic studies of the immune response have been performed using BALB/c mice [9, 10], the STA-9090 supplier sequencing of the C57BL/6 genome and Lenvatinib concentration the creation of multiple gene-altered C57BL/6 variants has made it a favored strain for immunologic
studies. In part, this preference for the use of C57BL/6 mice also reflects its seemingly reduced resistance to the production of anti-dsDNA antibodies when certain autoimmune susceptibility alleles are introduced [11, 12]. One notable characteristic of these pathogenic anti-dsDNA autoantibodies is the frequent presence of arginine in their antigen-binding sites [13]. By evaluating the composition of VH7183-containing H-chain transcripts as a function of B-cell development in the bone marrow, we sought to test whether the natural (germline) and somatic (clonal selection) mechanisms used to regulate the composition of the BALB/c antibody repertoire, which is the product of the IgHa H chain allele, were operating to the same extent and outcome in C57BL/6 mice, which carry the IgHb H-chain allele. C57BL/6 IgHb differs from BALB/c IgHa in VH, DH, and JH gene numbers and sequences
[14]. Our comparative study revealed that the constraints on initial VDJ gene segment utilization, amino acid composition, charge, and average CDR-H3 length as observed in C57BL/6 pro-B cells were similar, although not identical, to the constraints introduced by germline VDJ sequence in BALB/c pro-B cells. However, examination of the mature, recirculating B-cell pool in C57BL/6 wild-type and DH-altered mice suggests that the somatic mechanisms of clonal selection that act to Terminal deoxynucleotidyl transferase focus the repertoire by reducing the variance in CDR-H3 length and hydrophobicity in BALB/c mice appear to operate differently in C57BL/6 mice, permitting increased expression of antigen-binding sites enriched for hydrophobic and charged CDR-H3s, including those enriched for arginine residues. We used a combination of the schemes of Melchers [15] and Hardy [16] to sort bone marrow B lineage cells into progenitor (B), early (C), and late (D) precursor, immature (E), and mature (F) B-cell fractions. We then sequenced and analyzed the composition of cloned VH7183DJCμ transcripts expressed in these cells, with a focus on CDR-H3.